{{flagHref}}
Продукция
  • Продукция
  • Категории
  • Блог
  • Подкаст
  • Приложение
  • Документ
|
/ {{languageFlag}}
Выберите язык
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
Выберите язык
Stanford Advanced Materials {{item.label}}

Как нитинол может заставить спринклер включиться

Никель-титановый сплав, также известный как нитинол, - это бинарный сплав, состоящий из никеля и титана. Эти два элемента примерно равны по атомному содержанию (распространены нитинол 55 и нитинол 60). В результате изменения температуры и механического давления нитинол имеет две различные фазы кристаллической структуры, а именно аустенитную и мартенситную.

Nitinol springs

В нитиноле аустенит называется материнской фазой, которая представляет собой кристаллическую фазу, проявляющуюся в сплаве при высокой температуре. При понижении температуры аустенит постепенно превращается в мартенсит (субфазу).

В процессе превращения мартенсита и аустенита существует четыре вида температур:
As: температура, при которой мартенсит начинает превращаться в аустенит в процессе повышения температуры.
Af: температура, при которой мартенсит заканчивает превращение в аустенит в процессе повышения температуры.
Ms: температура, при которой аустенит начинает превращаться в мартенсит в процессе понижения температуры.
Mf: температура, при которой аустенит завершает превращение в мартенсит в процессе снижения температуры.
Фазовое превращение нитинола имеет термический гистерезис, поэтому As не равно Mf, по той же причине Af не равно Ms.

Нитинол обладает двумя свойствами: эффектом памяти формы (SME) и сверхэластичностью (SE).

shape memory alloy wire

1. Память формы
Память формы возникает, когда материнская фаза определенной формы охлаждается от температуры выше Af до температуры ниже Mf и полностью формирует мартенсит, деформируя мартенсит ниже температуры Mf. После нагрева до температуры ниже Af, при обратном фазовом превращении, материал автоматически восстанавливает свою форму в материнской фазе. Фактически, эффект памяти формы - это термически индуцированный процесс фазового перехода нитинола. Он означает способность нитинола деформироваться при определенной температуре, а затем восстанавливать исходную, недеформированную форму, когда температура выше его "температуры перехода".

2. Сверхэластичность
Так называемая сверхэластичность относится к явлению, при котором под действием внешних сил образец создает деформацию, значительно превышающую предельную упругую деформацию, и эта деформация может автоматически восстанавливаться при разгрузке. В материнской фазе под действием внешнего напряжения деформация вызывает мартенситный фазовый переход, в результате чего сплав демонстрирует механическое поведение, отличное от поведения обычных материалов. Его предел упругости намного больше, чем у обычных материалов. И он больше не подчиняется закону Гука. По сравнению с эффектом памяти формы, сверхэластичность не требует нагрева.

Категории
Об авторе

Chin Trento

Чин Тренто получил степень бакалавра прикладной химии в Университете Иллинойса. Его образование дает ему широкую базу, с которой он может подходить ко многим темам. Более четырех лет он занимается написанием статей о передовых материалах в Stanford Advanced Materials (SAM). Его основная цель при написании этих статей - предоставить читателям бесплатный, но качественный ресурс. Он приветствует отзывы об опечатках, ошибках или различиях во мнениях, с которыми сталкиваются читатели.

Оценки
{{viewsNumber}} Подумал о "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Ваш адрес электронной почты не будет опубликован. Обязательные поля отмечены*

Комментарий*
Имя *
Электронная почта *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

ОСТАВИТЬ ОТВЕТ

Ваш адрес электронной почты не будет опубликован. Обязательные поля отмечены*

Комментарий*
Имя *
Электронная почта *
Категории

ПОДПИСАТЬСЯ НА НАШУ РАССЫЛКУ

* Ваше имя
* Ваш e-mail
Успех! Теперь вы подписаны
Вы успешно подписались! Проверьте свой почтовый ящик, чтобы в ближайшее время получать отличные письма от этого отправителя.

Похожие новости и статьи

Подробнее >>
Магниевые сплавы: Легкие решения для современного машиностроения

В этой статье подробно рассматриваются магниевые сплавы. В ней объясняются основные свойства магния как металла. Рассматриваются различные серии, используемые в современном машиностроении, и освещается их применение в автомобильной, аэрокосмической промышленности, электронике и спортивном оборудовании.

УЗНАТЬ БОЛЬШЕ >
Промышленное использование выращенных в лаборатории алмазов: За пределами ювелирных изделий

Узнайте, как выращенные в лаборатории алмазы служат не только для украшения. Они обеспечивают долговечность, точность и эффективность механических устройств, терморегулирования электроники, оптических систем, полупроводниковых приборов и многого другого.

УЗНАТЬ БОЛЬШЕ >
Как применять порошки TiO₂ для разработки прототипов адсорбции лития

Порошки соединений титана, в частности Li₂TiO₃ и H₂TiO₃, открывают двери для будущих технологий адсорбции лития. Их химическая стабильность, селективность и устойчивые структуры делают их материалами с большим потенциалом для устойчивого извлечения и очистки лития.

УЗНАТЬ БОЛЬШЕ >
Оставьте сообщение
Оставьте сообщение
* Ваше имя:
* Ваш e-mail:
* Название продукта:
* Ваш телефон:
* Комментарии: